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Molecular dynamics calculations have been performed on a classical, 3-dimensional one-component plasma,
subjected to a magnetic field, which is uniform and constant in magnitude and direction; various values of the
plasma parameter and magnetic field strength were considered. The Ewald sum technique was used to deal
with the long-range Coulomb force, while the effects of the magnetic field were incorporated using a recently
developed algorithm. This algorithm takes into account the effects of the magnetic field exactly and thus is
more accurate than ones used previously. The two diffusion coefficients Dz and Dx, respectively parallel
and perpendicular to the magnetic field have been calculated. Both coefficients decrease as a function of
the magnetic field strength, but they differ considerably, with Dx always less than Dz. A noticeable plateau
is observed in the plots of the diffusion coefficients, especially for intermediate values of the plasma param-
eter. A simple theoretical model based on the generalized Langevin equation is presented; its results are in
reasonable qualitative agreement with the values obtained from molecular dynamics.
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I. INTRODUCTION

The one-component plasma (OCP) is the simplest model of an ionic fluid in which
classical, identical point ions move in a uniform and rigid neutralizing background
of electrons. The static properties of the OCP depend on a single dimensionless
plasma parameter � ¼ e2=r0kBT , where r0 ¼ ð3=4��Þ1=3 is the ion-sphere radius, e is
the electronic charge, T is the temperature and � is the number density. Various
static and dynamic properties of this system have been studied using Monte Carlo
and Molecular Dynamics (MD) techniques. The reader is directed to an article by
Baus and Hansen [1], for a comprehensive review and an extensive list of references.
However, the study of an OCP in a magnetic field has not received much attention.

Such a system could serve as a prototype for some astrophysical and terrestrial plasmas.
Bernu [2] performed rather limited MD simulations of the velocity correlation function
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and developed a primitive theoretical model. His simulation used an approximate
algorithm to include the effects of a magnetic field and his model predicted that the
diffusion parallel to the direction of the magnetic field is independent of the field
strength; this is contrary to his own MD results.
Recently, we developed an exact algorithm [3] for the motion of a charged particle in a

constant magnetic field and extended it to include position-dependent forces, of which
the Coulomb force is an example. This algorithm was used in an MD calculation of
the diffusion coefficient of a 2-dimensional electron fluid in the presence of a magnetic
field [4]. The scarcity of data for a similar 3-dimensional system and our new algorithm
provided an incentive for us to perform extensive MD calculations to study diffusion
of a 3-dimensional OCP as a function of the plasma parameter and magnetic field.
We have also developed a model for diffusion, based on the Langevin equation; it
is a one-parameter model and produces a reasonable qualitative agreement for both
diffusion coefficients, Dx (perpendicular to the field direction) and Dz (parallel).

II. SIMULATION DETAILS

The system is a classical 3-dimensional OCP with electrons of charge e and mass
m embedded in a uniform neutralizing background of opposite charge. There is a
uniform, constant magnetic field strength B in the z-direction. In our MD simulation
there are N electrons in a cube of side length L, interacting through the Coulomb poten-
tial �ðrÞ ¼ e2=r. The problem of the long-range nature of the potential in MD simula-
tions is handled using the Ewald technique for effectively summing the interaction of an
electron with all of its infinite periodic images [5]. It expresses the potential energy U in
terms of two convergent summations, one in real space and one in reciprocal lattice
space. The well-known result [6] is

U ¼
1

2
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The sum over p is taken over all lattice points, p ¼ Lð�1, �2, �3Þ with (�1, �2, �3) integers;
the prime on this sum implies that if i¼ j, the p ¼ 0 term is to be omitted; g is the
reciprocal lattice vector given by g ¼ ð2�=LÞð�1, �2, �3Þ. The parameter � is chosen so
that both series in (1) converge rapidly. Including the effect of the magnetic field, the
force on particle 1, say, is given by
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where s1j ¼ r1 � rj þ p and c is the speed of light. If � is chosen large enough, the only
term that contributes to the sum in real-space is that with p ¼ 0, and so the real-space
sum reduces to the usual minimum image convention. We chose �¼ 5/L and
truncated the real-space sum at p ¼ 0, as is normally done in such simulations. A
large value of � would require a large number of terms in the reciprocal-space sum.
As per previous simulations, we fixed the maximum value of the integer set (�1,�2,�3)
at 5, with the constraint that �21 þ �22 þ �23 � 27. In the simulation we use dimensionless
parameters: distances in units of the ion-sphere radius r0, energies in units of e

2/r0, time
in units of � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mr30=e

2
p

and magnetic field B in units of mc/e�. The following algorithm
for the particle dynamics in dimensionless units includes the effects of the Coulomb
force and the magnetic field [3].

xðtþ hÞ ¼
1

1þ a2
f2xðtÞ � xðt� hÞ � 2a½yðtÞ � yðt� hÞ� þ a2xðt� hÞ þ Ah2½ fxðtÞ � afyðtÞ�g

yðtþ hÞ ¼
1

1þ a2
f2yðtÞ � yðt� hÞ þ 2a½xðtÞ � xðt� hÞ� þ a2yðt� hÞ þ Ah2½ fyðtÞ þ afxðtÞ�g

zðtþ hÞ ¼ f2zðtÞ � zðt� hÞg þ h2fzðtÞ: ð3Þ

The velocity components are

vxðtÞ ¼ c1
1

2h
fxðtþ hÞ � xðt� hÞg � c2hfyðtÞ

vyðtÞ ¼ c1
1

2h
fyðtþ hÞ � yðt� hÞg þ c2hfxðtÞ

vzðtÞ ¼
1

2h
fzðtþ hÞ � zðt� hÞg:

ð4Þ

Here a ¼ ð1� cosðBhÞÞ= sinðBhÞ, A ¼ 2a=Bh, c1 ¼ Bh= sinðBhÞ and c2 ¼ ðsinðBhÞ�
BhÞ=Bh sinðBhÞ where h is the time step; fx(t), fy(t) and fz(t) are the components of
the Ewald sum expression for the Coulomb force. The z-component is not affected
by the magnetic field and hence is given by the usual Verlet algorithm. The velocity
results are used to control the temperature and confirm total energy conservation of
the system during the calculation.
We use the algorithm given by Eqs. (3) and (4) in our MD simulation. The basic cell

is a cube with side L ¼ ðN=�r30Þ
1=3 and containing 108 electrons; this translates to

L¼ 7.68 in dimensionless units. The starting configuration for the electrons was a
face-centered cubic structure, with velocities given by the Maxwellian distribution
determined by the given plasma parameter � (i.e. inverse temperature). The time step
h was chosen to be 0.04 in dimensionless units. Temperature scaling was done every
50-time steps. The equilibrium configuration was reached after running the MD simu-
lation typically for 15 000 time steps (in 5 cycles of 2000 time steps with scaling and 1000
without). Then, with the temperature scaling off, the position co-ordinates of the 108
electrons for 20 000 time steps were stored. We were able to maintain the temperature
to within 2% of the desired temperature. These co-ordinates were later used to obtain
the mean-square displacement from which the diffusion coefficients were obtained.
Simulations were performed for various values of � from 10 to 110; for each � several
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values of B between 0 and 4 were considered. For some typical numbers, one can refer
to the phase diagram of the OCP [7]. From the diagram, one can deduce, for example,
that an electron density of �¼ 1016 cm�3 and a temperature of 10K falls in the domain
of classical plasma; this corresponds to �� 60. B in Tesla then is approximately 20
times the B in dimensionless units, and h¼ 0.04 corresponds to about 0.01 ps.

III. DIFFUSION MODEL

Bernu [2] developed a model for the diffusion coefficients Dx and Dz by taking for
the memory function of the velocity correlation function (VCF), a Gaussian form
determined by the exact short-time behaviour of the appropriate VCF. This model is
not satisfactory, as it predicts Dz to be independent of the magnetic field, contrary to
the results of our MD simulation. In a recent paper [4], we developed a model based
on the Langevin equation for diffusion of a 2-dimensional electron gas subjected
to a magnetic field. Here we present an extension of this model for the system under
consideration. The Langevin equation with a magnetic field can be written as

dv

dt
¼ �

Z t

0

	Bðt� sÞvðsÞds�
e

mc
v� B þ RðtÞ ð5Þ

where vðtÞ is the velocity of the tagged particle, 	B(t) is a time-dependent friction
coefficient which depends on the magnetic field B, and RðtÞ is a random force (per
unit mass) which averages to zero and is not correlated with the velocity of the particle.
Since B is in the z-direction we have

v� B ¼ B
v, where 
 ¼

0 1 0
�1 0 0
0 0 0

0
@

1
A:

Taking the Laplace transform of (5), noting that the contribution from the random
force to each diffusion coefficient is zero and simplifying, we obtain

v̂vð!Þ ¼ ðI � bð!Þ
Þ�1
vð0Þ

i!þ 	̂	Bð!Þ
, ð6Þ

where I is the unit matrix and bð!Þ ¼ ðe=mcÞðB=ði!þ 	̂	Bð!ÞÞÞ. It can be easily shown
that

ð I � bð!Þ
 Þ�1 ¼
1

1þ b2
P where P ¼

1 b 0
�b 1 0
0 0 1þ b2

0
@

1
A;

we have dropped the dependence of b on ! for clarity. The self-diffusion coefficient,
defined as

D ¼

Z 1

0

vðtÞ � vð0Þ
� �

dt ¼ v̂vð0Þ � vð0Þ
� �

, ð7Þ
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can now be written as

D ¼
1

1þ b2
1

	̂	Bð0Þ
v2xð0Þ
� �

þ hv2yð0Þi þ ð1þ b2Þhv2zð0Þi
h i

: ð8Þ

This expression can naturally be broken into x, y and z-components of diffusion. For
the system being considered all results are symmetric in x and y; we label the diffusion
coefficient perpendicular to the magnetic field by x. Since hv2xð0Þi ¼ ðkBT=mÞ, the
diffusion coefficients can be written as

DzðBÞ ¼
1

�

1

	̂	Bð0Þ
¼
1

�

1

	̂	0ð0Þ

	̂	0ð0Þ

	̂	Bð0Þ
¼
Dzð0Þ

fB
where fB ¼

	̂	Bð0Þ

	̂	0ð0Þ

DxðBÞ ¼
1

�

	̂	Bð0Þ

	̂	2Bð0Þ þ B2
¼

Dzð0ÞfB

f 2B þ ½B�Dzð0Þ�
2
:

ð9Þ

These equations are in dimensionless units and their results are to be compared with the
corresponding MD values.
Equation (9) indicate that both diffusion coefficients depend on the magnetic field

strength B; the only unknown parameter is fB, which also depends on �. Note that
fB denotes the functional dependence of the friction coefficient 	(at !¼ 0) on B. The
value of Dz(0) was taken from the MD result for each value of �. Based on our analysis
of a similar 2-dimensional system [4], we chose a quadratic dependence for fB on
magnetic field, viz. fB¼ 1þ �2B2, and determined � from a best fit of the MD values
of Dz(B). Having done this, the expression for Dx(B) is free of any parameters and is
specified completely.

IV. RESULTS AND DISCUSSION

The stored (x, y, z) position co-ordinates of the 108 electrons for 20 000 time steps are
utilized to calculate quantities of interest. The mean-square displacement (MSD) has x-
component h�x2ðtÞi ¼ ð1=NÞh

PN
j¼1 ½xjðtÞ � xjð0Þ�

2
i and so on. The diffusion coefficients

Dx and Dz can be calculated using the corresponding MSD component at large times,
either by computing its slope or by dividing it by time.

Dx ¼ lim
t!1

h�x2ðtÞi

2t
¼ lim

t!1

1

2

d

dt
h�x2ðtÞi, ð10Þ

and similar expressions can be written for Dy and Dz; symmetry requires that Dy¼Dx.
We have performed extensive simulations and obtained diffusion coefficients for

several values of � ranging from 10 to 110, and for magnetic field strengths B ranging
from 0 to 4. Results are presented here for three representative values from hotter
to cooler: �¼ 20, 50 and 80. Figure 1 shows a plot of the two diffusion coefficients
as a function of B for �¼ 20; MD values for Dz and Dx are displayed by triangles
and diamonds, respectively. The predictions of our theoretical diffusion model
as given by Eqs. (9), are indicated by a solid curve of Dz and a dashed curve of Dx.
As stated earlier, our model depends on one parameter �; we chose this parameter so
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as to get the best fit to the MD results for Dz. The MD results indicate that. Dx is always
less than Dz, and both coefficients show a monotonic decrease as B is increased. The
effect of the magnetic field is to constrain the translational motion of the electron,
and thus the behaviour of Dx is roughly as expected since the x and y components
are directly affected by the magnetic field. Although the z-component of the equation
of motion does not contain B explicitly, the time-dependence of each z-coordinate is,
nevertheless, coupled to the variations of the x and y coordinates since the force in
the z-direction depends on all three components of the position. Thus Dz is expected
to decrease with B, albeit at a slower rate than Dx.
A careful look at Fig. 1 reveals an interesting feature, in that the decrease in the

diffusion coefficients is not uniform. For small B the decrease is uniform and mono-
tonic, then there is a region of B in which the diffusion coefficient decreases much
more slowly; this is followed by a rather steep decrease leading to almost zero diffusion
for large B. This plateau feature is more pronounced for Dz than Dx. We have observed
this behaviour for all values of �, not just those presented here, and feel that this feature
is real and not an artefact of our MD programme. It is more prominent at intermediate
values of �. For large values of �, the diffusion coefficient is small to start with, and
hence the plateau is not so obvious. For small values of �, the decrease in the diffusion
coefficient is very gradual which masks the plateau effect.
Our simple theoretical model predicts that Dx is always less than Dz, and its results

agree qualitatively with the MD values for both diffusion coefficients. The MD results,
which show a plateau followed by a rather sharp decrease of the diffusion coefficient,

FIGURE 1 Plot of the two diffusion coefficients as a function of the magnetic field strength B for � ¼ 20.
MD results are denoted by triangles for Dz and by diamonds for Dx. The model results are denoted by the
solid curve for Dz and by the dashed curve for Dx.
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especially for Dz, suggest that more complex physical processes are involved. Therefore,
a simple Langevin model is not sufficient to describe the process of diffusion in a
3-dimensional OCP in the presence of a magnetic field.
Figures 2 and 3 show similar plots of the two diffusion coefficients for �¼ 50 and 80,

respectively; the symbols are the same as in Fig. 1. The behaviour is similar to what
was seen for �¼ 20. However, the values of B where the plateau starts and where the
diffusion falls off sharply are smaller than in Fig. 1.
The presence of the magnetic field shows itself in the plots of theMSD in an interesting

fashion. In a central force field,MSD involves only translational motion and hence starts
off in a quadratic fashion for small times and becomes linear at long times. The effect of
the magnetic field alone is to make the charged particle go in circles, and the MSD of our
system reflects both contributions. In Fig. 4 we show the MSD in the x�y plane for
very small times t in [0, 10] for �¼ 20 and B¼ 3.0, 3.6 and 4.4. One clearly sees sinusoidal
oscillations, due to the magnetic field. The frequency of the oscillation is the cyclotron
frequency, ! ¼ eB=mc, which in dimensionless units becomes simply !¼B. The time
period is thus given by �B ¼ 2�=B: The graph shows precisely this time period for the
various values of B. It is also seen that the overall behaviour of the MSD is quadratic,
as it should be. For longer times, this behaviour should go over to linear, and the effect
of the magnetic field should be smeared out. This is exactly what is seen in Fig. 5, where
the same MSD of Fig. 4 is extended to t in [0, 40]. The amplitude of oscillation decreases
at longer times, though the time period of course stays the same.
It is realized that although the equation of motion for the z-component of the posi-

tion does not involve magnetic field directly, it does depend on B. Figure 6 is intended

FIGURE 2 Same as Figure 1, except for �¼ 50.
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FIGURE 3 Same as Figure 1, except for �¼ 80.

FIGURE 4 Plot of the mean-square displacement <�x2> as function of time t in [0, 10], for �¼ 20. Solid
curve represents B¼ 4.4, dashed curve represents B¼ 3.6 and dotted curve represents B¼ 3.0.
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FIGURE 5 Same as Figure 4, except for t in [0, 40].

FIGURE 6 Plot of z-coordinate of a typical particle as a function of time. The solid curve is for B¼ 4.4 and
the dotted for B¼ 0; both for �¼ 20. The horizontal lines indicate the bounds of the basic simulation cell.
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to display clearly the fact that diffusion parallel to the magnetic field is affected by
the field. The z-coordinate of a typical particle is shown for the time interval used
for diffusion calculations. The plots are for B¼ 0 and 4.4, for �¼ 20. The horizontal
lines at � 3.84 indicate the bounds of the basic cell. It is clear from the figure that
for B¼ 4.4, the z-coordinate is much constrained and this is reflected in the very
small diffusion coefficient Dz.

V. CONCLUSION

We have performed extensive molecular dynamics simulation of a 3-dimensional,
classical one-component plasma in the presence of a uniform, constant magnetic
field. A recently developed algorithm that treats the effects of a magnetic field exactly
has been used in the simulation. The diffusion coefficients, one parallel to and the other
perpendicular to the magnetic field, have been computed for a number of values of the
plasma parameter and the magnetic field strength. The diffusion coefficients fall off
with magnetic field strength, but the decrease is not uniform. After an initial steady
decrease, there seems to be a plateau followed by a steeper decrease, as the magnetic
field strength is increased. This phenomenon occurs for all values for the plasma
parameter, but is more pronounced at intermediate values, and for the diffusion
coefficient parallel to the magnetic field. A simple theoretical model, based on the
Langevin equation produced results that are in qualitative agreement with MD
values. Further development of a model to explain all of the observed features would
be valuable.
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